Low temperature sintering and microwave dielectric properties of $(Zn_{0.65}Mg_{0.35})TiO_3$ ceramics with BiVO₄

Bo Li · Bin Tang · Shuren Zhang · Hongmei Jiang

Received: 6 January 2010/Accepted: 21 June 2010/Published online: 29 June 2010 © Springer Science+Business Media, LLC 2010

Abstract The effects of BiVO₄ and CaTiO₃ additives on the microwave dielectric properties of (Zn,Mg)TiO₃ (ZMT) ceramics were investigated. BiVO₄ as a sintering agent could effectively lower the firing temperature of ZMT ceramics below 930 °C. From XRD analysis, the secondary phase formation occurred when BiVO₄ exceeding the solubility limit 2 wt% in ZMT matrix. SEM results indicated that due to the liquid phase sintering BiVO₄ significantly improved the grain growth and densification. With an increase of BiVO₄, the dielectric constant (ε_r) monotonously increased, but the quality factor (Qf) gradually decreased, and also the temperature coefficient of resonant frequency (τ_f) dramatically linear degraded. Besides, the addition of CaTiO₃ can adjust the $\tau_{\rm f}$ value of this system to a near zero level. (Zn_{0.65}Mg_{0.35})TiO₃ ceramic codoped with 1.5 wt% BiVO₄ and 5 wt% CaTiO₃ additives sintered at 930 °C exhibited the good microwave dielectric properties of $\varepsilon_r = 23$, Qf = 16177 GHz, $\tau_f \approx 1.0$ ppm/°C.

Introduction

With the rapid growth of wireless communication industries, microwave devices with high performance and miniaturized size have become increasingly important. Dielectric materials having a high permittivity (ε_r), a high quality factor (Qf), and a near zero temperature coefficient of resonant frequency (τ_f) have been extensively studied for microwave devices. On the other hand, low temperature co-sintered ceramics

B. Li (\boxtimes) · B. Tang · S. Zhang · H. Jiang

(LTCC) possessing good microwave dielectric properties has recently been widely investigated owing to the great potential for the application as multilayer microwave dielectric components. The sintering temperature of dielectrics for LTCC must be below 961 °C so as to co-fire with Ag internal electrode. However, conventional microwave ceramics usually require high firing temperature ranging from 1200 to 1500 °C to reach the high density and the high property. Hence, the development of LTCC material for microwave applications such as resonators, filters, and duplexers is urgently needed.

The results of the prior works showed that zinc titanates (ZnO-TiO₂, or ZnTiO₃) and their modified systems, with relatively low sintering temperatures and good dielectric properties, have been provided as suitable candidates for LTCC [1–4]. Nevertheless, there were some difficulties in the preparation of single-phase hexagonal ZnTiO₃, mainly because of the complicated phase transformation of ZnTiO₃ (specifically, the decomposition of ZnTiO₃ to Zn_2TiO_4 and rutile at above 945 °C) [5]. Therefore, (Zn,Mg)TiO₃ system has been developed since the substitution of Mg on Zn site can suppress the decomposition of $ZnTiO_3$ at the higher temperature [1, 2, 6]. To reduce the sintering temperature of (Zn,Mg)TiO₃, Kim et al. [6] prepared (Zn,Mg)TiO₃ using a semichemical synthetic route and a microbead milling technique. Besides, Kim et al. [5] found that the addition of B_2O_3 significantly enhanced the sinterability of ZnTiO₃-TiO₂ ceramics through the formation of a liquid phase. Recently, many studies reported the influences of glass frits (e.g. ZnO-B₂O₃-SiO₂ systems) and low melting point compounds (e.g. B₂O₃-LiF, B₂O₃- V_2O_5 , Bi_2O_3) on the microstructure and microwave properties of ZnTiO₃ and (Zn,Mg)TiO₃ dielectrics [7–16].

In fact, $BiVO_4$, which acts as a typical flux, has been used for the liquid-phase sintering for other microwave

State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China e-mail: lbuestc@163.com

dielectrics, such as $ZnNb_2O_6$, $BiNbO_4$, and $BiSbO_4$ [17– 19]. However, the doping effects of $BiVO_4$ on the $ZnTiO_3$ and $(Zn,Mg)TiO_3$ were not reported yet. Thus, the sintering behavior, microstructures, and microwave dielectric properties of $BiVO_4$ -doped $(Zn,Mg)TiO_3$ system were investigated in this work. Moreover, the addition of $CaTiO_3$ was employed to improve the microwave properties of this system and the modification effects were also researched.

Experiments

Powders of ZnO, MgCO₃, and TiO₂ (>99.5%, Xilong Chemical, China) were weighted according to the composition of $(Zn_{0.65}Mg_{0.35})TiO_3$. The powders were mixed in ethanol for 24 h in a balling mill, and then dried and calcined at 900 °C for 4 h. Bi₂O₃ and V₂O₅ (>99.5%, Xilong Chemical, China) were also ball milled for 24 h and calcined at 500 °C for 4 h to synthesize the sintering agent BiVO₄. (Zn_{0.65}Mg_{0.35})TiO₃ base materials were doped with *x* wt% BiVO₄ (*x* = 1, 1.5, 2, 3, 5) and *y* wt% CaTiO₃ (*y* = 2, 4, 8), re-milled with zirconia media in ethanol for 24 h. After drying and sieving, the powders were uniaxially pressed under a pressure of 15 MPa into disks of 10 mm in diameter and 7 mm in thickness. The disks were sintered in air at 890–950 °C for 2 h.

Crystalline phases of the sintered specimens were identified by an X-ray powder diffraction (XRD, Philips X' Pert Pro) using Cu K_{α} radiation ($\lambda = 1.54056$ Å). Microstructures of the specimens were studied using the scanning electron microscopy (SEM, Hitachi S-530). The densification behavior was evaluated by determining the bulk density using Archimedes technique. The microwave dielectric properties were measured by the Hakki–Coleman dielectric resonator method using Agilent E8363A network analyzer. The temperature coefficient of resonant frequency (τ_f) was also measured by the same method by changing temperature mainly from 20 to 80 °C and calculated from the following equation:

$$\tau_{\rm f} = (f_{80} - f_{20})/(60 \times f_{20}) \times 10^6 (\text{ppm/}^{\circ}\text{C})$$

where f_{80} and f_{20} represent the resonant frequency at 80 and 20 °C, respectively.

Results and discussion

Fig. 1 XRD patterns of (Zn,Mg)TiO₃ ceramics with x wt% BiVO₄ additions sintered at 930 °C

present study show the ZnTiO₃ hexagonal phase as a main crystalline phase, as shown in Fig. 1. For ZMT ceramics with 1 and 1.5 wt% BiVO₄ additions, it is not found the extra peaks due to other second phases. But for ZMT ceramics with BiVO₄ \geq 2 wt%, it can be observed the major phase ZnTiO₃ along with an extra phase identified to be BiVO₄. And generally the relative peak intensities of the BiVO₄ phases increased with an increasing of $BiVO_4$ contents. It is known that the radius of the V⁵⁺ ion (0.59 \AA) is similar to that of the Ti⁴⁺ (0.68 Å), and the Bi^{3+} (1.17 Å) is much larger than the Zn^{2+} (0.74 Å). according to Shannon's work [21]. So the small amount of V and Bi ions could be incorporated into the ZnTiO₃ crystal lattice, and form the (Zn,Bi)(Ti,V)O3-type solid solutions. However, the extra BiVO₄, which cannot dissolve in the ZMT matrix, will precipitate as a secondary phase. It turns out from Fig. 1 that the solid solubility limit of BiVO₄ in (Zn,Mg)TiO₃ ceramics is lower than 2 wt%.

The SEM photographs of ZMT ceramics with x wt%BiVO₄ additions sintered at 930 °C are illustrated in Fig. 2. Although 1 wt% BiVO₄-doped specimen in Fig. 2a exhibits a uniform microstructure with fine grains $(1-3 \mu m)$, the specimens containing >1.5 wt% of BiVO₄ phases show the abnormal grain-growth (>10 µm), and the grain size increases gradually for further increase of BiVO₄ content. This result indicates that the BiVO₄ addition has an obvious influence on the grain growth behavior of ZMT ceramics. As shown in Fig. 2b, c, the microstructure shows the mixture behavior for two kinds of grains. Besides, EDS analysis indicates that the concentration of BiVO₄ in the large grains especially near the grain boundary is higher than that in the small grains. It could be figured out that small amounts of Bi and V elements can be dissolved in ZMT phase, and promote the abnormal growth of ZMT grains. When BiVO₄ content further increased to 3 and 5 wt%, most of grains grow large and become uniform and dense (Fig. 2d, e). According to the results from XRD combined with EDS, the relative white matters randomly distributed in the ceramics are considered to be the secondary phase BiVO₄. Therefore,

this suggests that $BiVO_4$ formed the liquid phases during the sintering procedure, and excess fractions of $BiVO_4$ appeared at the grain boundary.

Figure 3 represents the bulk densities of ZMT ceramics as a function of BiVO₄ addition sintered at temperatures ranging from 890 to 950 °C. Since the theoretical density of $ZnTiO_3$ is 5.16 g/cm³ and that of MgTiO₃ is 3.89 g/cm³ [12], the calculated value of $(Zn_{0.65}Mg_{0.35})TiO_3$ is 4.716 g/ cm^3 . All the specimens reach to >90% of the theoretical density. As shown in Fig. 3, the lower density values reveal that 1 wt% BiVO₄ is not enough for completing the densification of ZMT ceramics in this lower temperature range. However, the densities of the specimens gradually increase with further increasing BiVO₄ addition in general. The dramatic enhancement of densities indicates that the addition of 1.5 wt% BiVO₄ could significantly improve the densification of ZMT ceramics. For 5 wt% BiVO₄-doped ZMT ceramics, the higher bulk density, 4.6 g/cm³, could be reached when sample sintered at the lower temperature 890 °C, which indicates that a BiVO₄-related liquid phase is formed and the liquid phase can lower the sintering temperature effectively. In fact, Bi₂O₃-V₂O₅ composition with 1:1 mol ratio could form the eutectic phase which produced the liquid phase at temperatures lower than 650 °C. In

Fig. 3 Densities of ZMT ceramics as a function of BiVO_4 addition sintered at 890–950 $^\circ\mathrm{C}$

addition, the density of ceramic materials usually enhances with increasing the firing temperature. However, the decrement of density is clearly observed here as the firing temperature increases, which might be resulted from overfiring and/or the evaporation of Bi_2O_3 in these compounds. From the above results, it could be considered that the significant reduction in the sintering temperature of ZMT ceramics is possible owing to the BiVO₄ addition, and meanwhile BiVO₄-doped ZMT dielectrics maintain the relatively high density.

Figures 4, 5, and 6 show the microwave dielectric properties of different amount of BiVO₄-doped (ZnMg)TiO₃ ceramics sintered at 890–950 °C. In the previous work, it indicated that the pure BiVO₄ sample exhibits microwave dielectric properties of $\varepsilon_r = 68$, Qf = 8000 GHz, $\tau_f \approx -243$ ppm/°C [17]. The dielectric constants vary as a function of BiVO₄ content, as shown in Fig. 4. The ε_r values of BiVO₄-doped ZMT samples monotonously increase with increasing BiVO₄ addition, which is surely due to the increment of the BiVO₄ inclusion in the ZMT matrix since BiVO₄ has a much higher ε_r value ($\varepsilon_r = 68$). In addition, the variation trend of ε_r values versus BiVO₄ addition is similar to the observed density behavior as shown in Fig. 3. The ε_r values are generally known to be affected by the morphology of the microwave ceramics, such as grain size and density. Therefore, it may be considered that on a basis of the density and microstructure observation, the increase of ε_r value is attributed to the liquid-phase densification with increasing amount of

Fig. 4 Dielectric constants of ZMT ceramics sintered at 890–950 $^\circ$ C as a function of BiVO₄ content

Fig. 5 Qf values of ZMT ceramics sintered at 890–950 $^{\circ}\mathrm{C}$ as a function of BiVO_4 additions

Fig. 6 Temperature coefficients of resonant frequency of ZMT ceramics with x wt% BiVO₄

BiVO₄ addition. Moreover, for 1–2 wt% BiVO₄-doped specimens, the ε_r value increases with sintering temperature; whereas for 3–5 wt% doped ones, the decrease of ε_r value is observed at higher temperature caused by overfiring. That is, the ε_r variation as a function of firing temperatures is also in accordance with the densification behavior.

The Qf values of x wt% BiVO₄-doped ZMT ceramics sintered at different temperature are presented in Fig. 5. It can be seen that the Qf values degrade with increasing the BiVO₄ content when the firing temperature is over 930 °C. This reduction of Qf values is obviously owing to the BiVO₄ with poor Qf value (Qf = 8000 GHz) according to the mixing effect. Nevertheless, the Qf values are maximized at 1.5 wt% of BiVO₄, and then degrade with increasing BiVO₄ addition also, when specimens are sintered at below 910 °C. On the other hand, the Of values keep increasing as the sintering temperature increases from 890 to 930 °C. This is because the Qf values are independent of density or porosity for a relative density higher than 90% theoretical density of $(Zn_{0.65}Mg_{0.35})TiO_3$ (4.716 g/cm³). Moreover, the grains become large when the sintering temperature increases, which would result in lower dielectric loss. Because a large grain could lead to less grain boundary and less lattice mismatch. The maximum Qf value of 26300 GHz could be obtained at 930 °C for 1.5 wt% BiVO₄-doped ZMT ceramics.

Figure 6 plots the temperature coefficient of resonant frequency (τ_f) values of the BiVO₄ doped ceramics sintered at 930 °C as a function of the amount of BiVO₄ addition. It can be seen that the τ_f values at first slightly decrease from -60 to -64 ppm/°C with increasing BiVO₄ content from 1 to 1.5 wt% and then decrease steeply from -72.2 to -90.7 ppm/°C when the BiVO₄ content increase from 2 to 5 wt%. This gradually decrease in τ_f values as shown in Fig. 5 is ascribed to the addition of BiVO₄, since BiVO₄ possesses a much higher absolute value of negative τ_f $(\tau_{\rm f} \approx -243 \text{ ppm/°C} [17])$ compared with the pure (Zn,Mg)TiO₃. The presence of BiVO₄ phase in ZMT matrix was identified by the previous XRD in Fig. 1. According to the above analyses, it can be concluded that the small amount of BiVO₄ not only improved the microstructure and sintering behavior but also achieved the good microwave properties of this system. (Zn_{0.65}Mg_{0.35})TiO₃ ceramic with 1.5 wt% BiVO₄ sintered at 930 °C shows the dielectric properties of $\varepsilon_{\rm r} = 21$, Qf = 26300 (15 GHz), $\tau_{\rm f} \approx -64 \text{ ppm/°C}$. But the $\tau_{\rm f}$ has a much more negative value than we expected, and the further research for adjusting $\tau_{\rm f}$ to zero is required.

The XRD patterns of ZMT ceramics with different amounts of CaTiO₃ additive are represented in Fig. 7. It is observed that only $\leq 2 \text{ wt\%}$ CaTiO₃-doped samples exhibit a single rhombohedral phase structure. However, the CaTiO₃ as a secondary phase is detected for specimens containing $\geq 6 \text{ wt\%}$ CaTiO₃. It is also shown that the Ca-TiO₃ peak intensities increase with increasing CaTiO₃

Fig. 7 XRD patterns of samples doped with different content of $CaTiO_3$ sintered at 930 °C

addition. It is believed from this result that the solid solubility of CaTiO₃ in ZMT ceramic is lower than 2 wt%. As we know, the ionic radius of Ca²⁺ (1.35 Å) is much larger than that of Zn²⁺ (0.74 Å), and CaTiO₃ different from ZnTiO₃ owns the cubic perovskite structure. Thus, only small amounts of Ca could be dissolved in the (Zn,Mg)-TiO₃ matrix and form the (Zn,Mg,Ca)TiO₃ solid solutions.

Figure 8 shows that the microstructure for the ZMT materials changes markedly with the CaTiO₃ additions. Although 2 wt% CaTiO₃-doped ZMT specimen in Fig. 8a shows the abnormal grain growth, the number of platy large grains reduces in comparison with the specimen without CaTiO₃ (Fig. 2a). Moreover, it can be seen from Fig. 8b,c that the specimens containing ≥ 6 wt% of CaTiO₃ almost have homogeneous microstructure except few exaggerated grains. That is to say, as the amounts of CaTiO₃ increase, the grain sizes of ZMT samples become small and uniform. This behavior seems to result in the CaTiO₃ addition enhancing the sintering temperature of this system, which means that CaTiO₃ with higher firing temperature could prevent the formation of liquid phase at such lower temperature 930 °C. Besides, the SEM-EDS analysis reveals that the bright grains randomly distributed in the ZMT matrix in Fig. 8c is the CaTiO₃ phase, which also demonstrated by the previous XRD.

It is well known that CaTiO₃ exhibits excellent microwave properties: $\varepsilon_r = 170$, Qf = 3600 (7 GHz), $\tau_f \approx$ 800 ppm/°C. So different amount of CaTiO₃ compounds was incorporated into BiVO₄-doped (Zn,Mg)TiO₃ system in order to adjust the dielectric parameters, especially the τ_f value. Compared with ZMT ceramics, significantly improved microwave properties, i.e., $\varepsilon_r = 20.3$, Qf = 18400 GHz, $\tau_f \approx -6.5$ ppm/°C, are obtained for the

Fig. 8 SEM micrographs of ZMT ceramics doped with x wt% CaTiO₃ additions sintered at 930 °C. **a** x = 2, **b** x = 6, **c** x = 8

Fig. 9 Microwave dielectric properties of $CaTiO_3$ modified ZMT ceramics sintered at 930 °C

sample with 2 wt% CaTiO₃. As shown in Fig. 9, both ε_r and $\tau_{\rm f}$ values of the specimens increased with increasing CaTiO₃ addition, which is attributed to the large value of ε_r and $\tau_{\rm f}$ for CaTiO₃. Since the $\tau_{\rm f}$ values gradually increase from -6.5 to 10.4 ppm/°C, the $\tau_{\rm f}$ values of this system can be adjusted to a near zero by carefully controlling the content of CaTiO₃. In contrast, the value of Qf are decreased with increasing amount of CaTiO₃. This gradual degradation in Qf is attributable to the CaTiO₃ inclusion with relative lower Qf values and much higher firing temperature. Further, the latter reason for the decrease of Of could be explained as follows. As the amount of CaTiO₃ increases, the sintering temperature of CaTiO₃-doped system would be enhanced and the densification behavior could be deteriorated. Eventually, (Zn_{0.65}Mg_{0.35})TiO₃ ceramic codoped with 1.5 wt% BiVO₄ and 5 wt% CaTiO₃ additives sintered at 930 °C shows the good microwave dielectric properties: $\varepsilon_r = 23.0$, Qf = 16177 GHz, $\tau_f \approx$ 1.0 ppm/°C.

Conclusion

The addition of BiVO₄ as a sintering agent to $(Zn,Mg)TiO_3$ ceramics could be lower the sintering temperature below 950 °C. With increasing the BiVO₄ additive, low-fired ZMT ceramics exhibit a monotonous increase in dielectric constant (ε_r), a gradual decrease in the quality factor (Qf), and a dramatically linear degradation in the temperature coefficient of resonant frequency (τ_f). These can be surely attributed to the increment of the BiVO₄ inclusion in the ZMT matrix, since BiVO₄ has a much higher ε_r , lower Qf and negative τ_f value. Besides, small amounts of BiVO₄ could dissolve into ZMT matrix, and the extra BiVO₄ beyond the solubility limit 2 wt% will precipitate as a secondary phase. BiVO₄ could promote the grain growth and improve the densification of ZMT ceramics significantly. 1.5 wt% BiVO₄-doped (Zn_{0.65}Mg_{0.35})TiO₃ ceramics sintered at 930 °C showed the dielectric properties of $\varepsilon_r = 21$, Qf = 26300 (15 GHz), $\tau_f \approx -64$ ppm/°C.

The ε_r and τ_f values of the specimens increased with increasing CaTiO₃ addition due to the CaTiO₃ with large ε_r and τ_f value. Therefore, the τ_f values of this system can be adjusted a near zero by carefully controlling the content of CaTiO₃ compounds. Moreover, the solid solubility of CaTiO₃ in ZMT system is lower than 2 wt%, and CaTiO₃ with higher firing temperature could prevent the formation of liquid phase as well as the abnormal grain growth. In this work, (Zn_{0.65}Mg_{0.35})TiO₃ ceramic codoped with 1.5 wt% BiVO₄ and 5 wt% CaTiO₃ additives sintered at 930 °C exhibited the good microwave dielectric properties: $\varepsilon_r = 23$, Qf = 16177 GHz, $\tau_f \approx 1.0$ ppm/°C.

References

- 1. Kim HT, Kim YH, Byun JD (1998) J Korean Phys Soc 32(2): \$159
- 2. Kim HT, Kim YH, Byun JD (1998) J Korean Phys Soc 32(2): S346
- Golovchanshi A, Kim HT, Kim YH (1998) J Korean Phys Soc 32(2):S1167
- 4. Kim HT, Byun JD, Kim Y (1998) Mater Res Bull 33(6):963 (975–986)
- Kim HT, Kim SH, Nahm S, Byun JD (1999) J Am Ceram Soc 82(11):3043
- Kim HT, Nahm S, Byun JD, Kim Y (1999) J Am Ceram Soc 82(12):3476
- 7. Chaouchi A, d' Astorg S, Marinel S, Aliouat M (2007) Mater Chem Phys 103:106
- 8. Zhang QL, Yang H, Zou JL, Wang HP (2005) Mater Lett 59:880
- 9. Wang Y-R, Wang S-F, Lin Y-M (2005) Ceram Int 31:905
- Chaouchi A, Aliouat M, Marinel S, d' Astorg S, Bourahla H (2007) Ceram Int 33:245
- 11. Liu X, Gao F, Zhao L, Tian C (2007) J Alloy Compd 436:285
- Hsieh M-L, Chen L-S, Wang S-M, Sun C-H, Weng M-H, Houng M-P, Fu S-L (2005) Jpn J Appl Phys 44(7A):5045
- 13. Lee Y-C, Lee W-H (2005) Jpn J Appl Phys 44(4A):1838
- 14. Lee Y-C, Lee W-H, Shiao F-T (2004) Jpn J Appl Phys 43(11A): 7596
- Chai Y-L, Chang Y-S, Hsiao Y-J, Lian Y-C (2008) Mater Res Bull 43:257
- Li B, Zhou X, Zhang S, Jiang H (2009) J Mater Sci Mater Electron 20(11):1123
- 17. Wee S-H, Kim D-W, Yoo S-I (2004) J Am Ceram Soc 87(5):871
- Zhou D, Wang H, Yao X, Liu Y (2008) J Electroceram 21(1–4): 469
- Zhou D, Wang H, Pang L, Yao X (2010) Mater Chem Phys 119(1-2):149
- Li B, Zhang S, Yuan Y, Zhou X, Xiang L (2009) J Mater Sci 44(18):4993. doi:10.1007/s10853-009-3763-6
- 21. Shannon RD (1976) Acta Cryst A32:751